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The predictive models and procedures used in the Forest Stand Generator (STAG)

ABSTRACT

The Forest Stand Generator, STAG, is a PC based program that uses statistical routines to produce
complete stand descriptions comprised of individual tree measurements of diameter at 4.5 feet
above ground (denoted hereafier as diameter at breast height, or DBH), total height, height-to-
crown base, species and tree expansion factor. STAG is versatile enough to work with several
types of data and still produce complete stand descriptions. This achievement makes it possible to
utilize the California Conifer Timber Qutput Simulator (CACTOS, Wensel and Others, 1986,
1987) for simulation of tree growth and mortality even though the initial datasets could not have
been used with CACTOS.



_INTRODUCTION

The interior forests of Northern California are typically comprised of mixed conifer species of
multiple ages and sizes. Inventory procedures for these lands are varied, as is the experience in the
rest of the U.S. There are several common inventory procedures that this work addresses. One
typical procedure is to measure DBH and to subsample tree heights and beight-to-crown base.
This procedure yields what can be considered a "missing data” case. Another common procedure
is to record the number of trees by diameter classes. This yields stand table data which is a discrete
approximation of the continuous diameter distribution. In some cases only stand summary
statistics are recorded such as the basal area per acre (basal area is the cross-section of trees
measured at 4.5 feet above ground in square feet on a per acre basis) and number of trees per acre.
In these latter two cases no individual tree information is recorded, just overall stand parameters.

A common use of inventory data is for simulation of future growth and yield of stands from which
the data were derived. Qur goal is to ensure that the three forms of inventory data listed above can
be made to conform to the requirements of the California Conifer Timber Output Simulator,
CACTOS (Wensel and others 1986, Wensel and Biging, 1987). CACTOS simulates the growth
and development of individual trees and requires that species, DBH, tree height (H), height-to-
crown base (HCB) or live crown ratio, and tree expansion factor? be supplied for each individual
tree making up the stand description. When all these data are present we refer to them as a stand
description which is comprised of complete individual wee records. To take full advantage of the
simulation capacity of CACTOS. these variables should be measured for all trees.

When data sets are not complete STAG can be used to produce complete stand descriptions for a
wide class of inventory procedures (Biging, Meerschaert, and Robards 1991). This paper will
discuss the estimation procedures used in STAG to (1) fill in missing measurements of tee height,
height-to-crown base or both; (2) generate stands from summary statistics; and (3) convert stand
table data, numbers of trees by DBH classes and species, to individual tree records so that these
stand descriptions (comprised of complete individual tree records) can be analyzed by CACTOS.
We also discuss the predictve equations and analytic procedures used to produce complete stand
descriptions for these three differing categories of data availability.

4 Tree expansion factor is defined as the number of trees per acre that the sample tree represents.
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DATA

Data for this study were provided by the Northern California Forest Yield Cooperative growth and
yield project. These data were collected from 710 permanent plots located throughout the mixed
conifer region of northern California. Variables measured for each tree included species, DBH,
total height, and height-to-crown base. The permanent plots were established in 1978-79 and a
five year remeasurement was made in 1983-84. These plots were typically 1/5t0 acre in size, but
contained subplots used to measure submerchantable trees. Usually trees greater than 11.0 inches
in DBH were measured on the full plot. Trees between 5.5 and 11.0 inches in DBH were
measured on a 1/10th acre subplot and trees between 1.5 and 5.5 inches in DBH were measured on
a 1/20th acre subplot. There were some variations in the class limits depending upon the company
collecting the data. The five year remeasurement data were used for the models developed in later
sections of this paper. Figure 1 shows the location of the permanent plots by township and the
Appendix provides summary statistics for much of the data used in this study.



ESTIMATION PROCEDURES

STAG is a PC based program that uses statistical routines to produce stand descriptions comprised
of complete individual wee measurements of DBH, total height, height-te-crown base, species and
tree expansion factor. There are three main data analysis routines in STAG and distinct statistical
procedures used in each corresponding to the three different classes of data availability (filling in
missing data, converting stand table data, and generating stands from summary statistics). Each of
the three routines are described below. In this section we define estimation techniques for
overstory trees. We define overstory trees as those trees greater than a defined threshold value of
either 5.5 or 11.0 inches in DBH. The species are denoted throughout the paper using the species
codes given in Table 1. These species are classified into 8 different species groups during the
simulation process as shown below in Table 2.

Table 1. Species codes and names.

Species
Species Code  Common Name Abbrevianon Scientific Name
01 ponderosa ping PP Finus ponderosa (Laws.)
02 sugar pine SP Finus lambertianag (Dougl.)
03 incense cedar IC Libocedrus decurrens (Torr.)
04 Douglas-fir DF Pseudorsuga menziesii (Mirb.) Franco
05 white fir WF Abies concolor (Gord. and Glend.) LindL
06 red fir RF Abies magnifica (A. Murr.)
07 lodgepole pine LP Pinus contorta (Dougl.)
08 white pine WP Pinus monticola (Dougl.)
09 Jeffrey pine Jp Pinus jeffreyi (Grev. & Balf)
10 miscellaneous conifers CM n.a.
11 chinquapin CH Castanopsis chiysophylla (Dougl.y A. DC.
12 black oak BO Quercus kelloggii (Newb.)
13 tan oak TO Lithocarpus densiflorus (Hook. & Arn.)

14 misc. hardwoods HM n.a.
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Table 2, Species groups used for modelling in STAG.

Species Species Group Sp. Group  Species (and Codes) Included in Group
Group No.  Name Abbreviation

1 Ponderosa Pine PP PP(01), IP(09), LP(07)

2 Sugar Pine SP SP(02), WP(08)

3 Incense Cedar IC 1C(03)

4 Douglas-fir DF DF(04), CM(10)

5 White Fir WF WEF(03)

6 Red Fir RF RF(06)

7 Other Hardwoods OH CH(11), TO(13), HM(14)"

8 Black Oak BO BO(12)

* The OH equations were derived mainly from CH(?1), and TO(13)

ESTIMATING TOTAL HEIGHT
STAG can be used to fill in where tree heights, heights-to-crown base, or both are missing
provided that the species, DBH, and expansion factors exist for all trees on the plot. Models [1]
and (2] are used to estimate missing heights for overstory (> 5.5 inches DBH), and understory
trees (£ 5.5 inches DBH), respectively.

Heights for overstory trees whose diameter exceeds 5.5 inches are estimated as a function of DBH,
stand basa) area, and elevation as:

[1] Ho = by + b VDBH +bs-VBAg +b3 E2

where Ho = the estimated total height (ft) for overstory trees

BAg = the stand basal area (ft2) in trees greater than 5.5 inches in DBH,

DBH = wee diameter at breast height (DBH > 5.5 inches)
E = stand elevation in feet.

The coefficients by, by, by, and by were estimated for species groups 1-8 (see Table 2) and an all
species combined category. Sample sizes for each species ranged from a low of 340 observations
for black oak 10 over four thousand observations on Ponderosa pine and white fir. All standard
errors were in the range of 9 - 14 feet. Other model forms which included site index were
evaluated, but did not outperform this model. Coefficient values and fit statistics are presented in
Table 3.



The model used for predicting heights of understory trees is:

2] ﬁu=4.5+ﬂi-%-DBH

o~

where Hu = the estimated total height (ft) for understory trees
whose diameter is in the range < DBH £ 5.5
Hss = the predicted height (ft) of a 5.5 inch DBH tree from equation [1]

Model {2] simply constrains the predicted height of understory trees to be between 4.5 feet and the
height of a 5.5 inch DBH rtree as predicted by model [1]. We used this constrained equanon rather
than a statistical model to ensure that the understory height predictions would smoothly join the
overstory equation.

Table 3. Coefficients and fit staristics for the total height model [ 1] for overstory trees.

~ Species Group Syx N bo bj b> b3
angd number
PP [1] 12.144 4173 -38.673 27.073 1.809  -7x107
SP [2] 11.215 1070 -36.456 28.328 0.999  -6x 107
IC {3] 9.406 2260 -28.246 22.713 0.709  -6x 107
DF [4)] 11.488 2458 -34.586 27.400 1.446  -6x 107
WF (5] 10.700 5167 -40.147 29.353 0.829  -4x 107
RF [6] 11.397 501 -36.656 28.605 1.005  -5x107
OH [7] 13.218 273 -38.731 15.614 2.621 0
BO [8] 14.421 340 -2.386 13.237 1.712  -8x 107
All 13.488 16242 -35.36 27.61 1.03 -6 x 1077

ESTIMATING HEIGHT-TO-CROWN BASE

To estimate height-to-crown base (HCB) for overstory trees with DBHs > 5.5 inches, a model
form based on the logistic equation was chosen so that HCB would be constrained to be between
zero and total height. The form of the model selected was:

3] ACBg = H ( 1-e (¢ +¢1ln BAg + ¢p(DBH/H) )2 )
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where HCBo = predicted height (ft) to the base of the crown for overstory wees (> 5.5
inches in DBH),
H = is total height (ft),
DBH = diameter at breast height (nearest 0.1 in),
cos €1, €7 = coefficients esamated for each species group, and
BAg 18 as defined above.

Sample sizes were the same as in estimating the total height model, but standard errors were
slightly less ranging between 9 - 11 feet. Coefficients and fit statistics arc presented in Table 4.

Table 4. Coefficients and fit statistics for the height-to-crown base mode! [3] for overstory ees.

Species

Group and Sy N Co cl c2
number

PP [1] 10.375 4173 1.027 -0.112 1.925
SP [2] 0.454 1070 1.222 -0.130 1.400
1C [3] 8.703 2260 1.119 -0.097 0.974
DF [4] 11.140 2458 1.369 -0.162 1.833
WF [5] 10.8356 5167 1.298 -0.154 1.831
RF [6] 11.089 501 1.450 -0.160 1.022
OH [7] 9.188 273 1.727 -0.184 0.535
BO [8] 10.315 340 1.313 0.133 0.745
All 10.580 16242 1.323 -0.146 1.414

Height-to-crown base of undersiory trees was estimated as:

(4] ACB, =co+¢;-DBH + c3-H + ¢3-Ng

where HCBy = predicted height (ft) to the base of the crown for understory trees (£ 5.5
inches in DBH),
H is total height (ft),

Ng
€0, €1, €2

number of trees per acre with DBH > 5.5 inches, and
coefficients estimated for each species group.
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Table S. Coefficients and fit statistics for the height-to-crown base model [4] for understory trees.

Species

Group Syx N Co Cl ) c3 b
and no.
PP [1] 3.393 1377 2.727 1.737  0.166 -0.0181 1.3971
SP [2] 3.512 224 4.214 1.110 0.252 -0.0192 | 1.2756
IC [3] 3.097 996 1.764 0.894 0.197 -0.0069 | 1.5468
DF [4] 4.753 960 1.659 2.567 0.188 -0.0168 | 2.0209
WFE [5] 3.901 2470 0.866 1.468 0.295 -0.0129 1.8335
RF [6] 3.741 131 3.361 0437 (.294 -0.0132 | 2.0591
OH [7] 3.90% 75 9.145 -0.599  (.411 -0.0165 1.0384
BO [8] 4.210 90 1.290 -0.032  0.447 -0.0153 | 2.2357

All 3988 6323 1.922 1,201 Q.302 -0.0159 | 1.9789

For model [4] we observed that variance increased with increasing predictions of height-to-crown
base. We formulated a simple model for this relationship as:

[4b] o7, = b-HCBjy
where HCBjy = predicted height (ft) to the base of the crown for the ith understory tree
(< 5.5 inches in DBH),
Gi2u = the variance around the regression of the height-to-crown base model [4]

for the ilh understory tree (i = 1 to n)

o
]

a coefficient estimated for each species group

The procedure for adding stochastic errors is discussed in more detail in a later section. Briefly,
we predict height-to-crown base for understory trees with DBHs < 5.5 inches using equation [4].
Stochastic errors are then added to the prediction. We assume the stochastic errors are distributed
normally with mean zero. and variance as given in equation [4b]. The estimated values of beta (b)
in equation [4b] are given in the Table 5 above.

With these equations it is possible to "fill in" or estimate missing values of height and height-to-
crown base for individual trees. The only exogenous vartable that needs to be supplied for each
stand 13 elevation. Basal area (BAg) can easily be computed directly by summing the per acre
individual tree basal areas obtained from the individual tree DBHs and expansion factors contained
in the stand description file. Number of trees (Ng) can easily be calculated from the expansion
factors associated with individual trees in the stand description file.
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CONVERTING MERCHANTABLE HEIGHTS TO TOTAL HEIGHTS

The four different types of wee height measurements allowed in STAG include: 1) total heights, 2)
heights to a merchantable top (6.5 in. d.i.b.), 3) heights measured to whole (16.5 ft.) logs, or 4)
heights measured to half logs (8.25 ft.). Within a STAG stand description file comprised of
individual wee measurements all heights must be of the same measurement standard. CACTOS
requires total heights for individual trees, but STAG can manipulate merchantable height to obtain
an estimate of total height. STAG uses a taper equation to solve for total height for the six major
conifer species (species group numbers 1-6 in Table 2) whenever height to a merchantable top or
number of 16.5 ft. logs is supplied® .

The equation used to convert merchantable height (MH) to total height (H) is derived from a
sigmoid taper equation (Biging, 1984). The fotal height estimate obtained from inverting the taper

equaton is:
5 fie MH-(0)°
(1 - expl(d/DBH - by) / by]]13
where H' = the predicted total tree height (ft.) estimated from merchantable height
A =1 - exp(-b1/b3)
DBH = the diameter at breast height (in.)
d = the merchantable top diameter (<6.5")
MH = the height 10 the merchantable top diameter (ft.)

exp(x) = 2.71828... raised to a power of 'x', and
by,bs are species specific coefficients given in Table 6

Table 6. Coefficient estimates by species for equation [5] from Biging (1984).

Species N b1 by
and spp. codes

PP [1] 2014 1.019589 0.335666
SP [2] 692 1.06932 0.415632
IC [3] 541 1.071343 0.472157
DF [4] 1588 1.029288 0.334012
WF [5] 2645 1.092615 0.365295
RF [6] 312 1.075880 (.353784

3 The height conversion process is not intended to encourage the measurement of other than total
heights. Rather, it is intended to allow the use of older inventory data.
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If the heights of wees are entered as number of Jogs, the program first converts these to heights to
the given merchantable top using equation [6], and then uses equation [5] to predict total heights.
The equation to estimate height to the merchantable top (MH) when only the number of logs is
known is given by:

6] MH = [SH + _LEL_} + NLOGS-LL

where MH = the estimated height to the merchantable top diameter {ft.)
SH = stump beight of the tree = 1.5 ft.
LL = log length in feet {16.5 or §.25 feet)

NLOGS = the number of logs of length LL for a tree

STOCHASTIC ERRORS

When filling in missing data (height or height-to-crown base) or generating stands from summary
statistics (discussed in a later section) the user can either make a deterministic or a stochastic
prediction of missing values. Choosing stochastic errors means that a random value will be added
to the prediction to reflect that an individual tree's dimensions cannot be predicted with certainty,
Thus, a random value will be added or subtracted from the predicton. The random value is drawn
from a normal distribution with mean zero and variance equal to the estimated variance around the

regression (Si_x) as given in Tables 3 and 4. In the case of the understory height-to-crown base

model [4], the distributional mean is zero, but the vartance is proportional to the predicted height-
to-crown base (see equation [4b]). If random errors are not requested, then the missing value is
set equal to the model prediction (deterministic prediction). If random errors are not added, all
predicted heights and crown ratios will be identical for a given diameter of a particular species,
given that basal area and elevation are the same.

PARAMETER UPDATING

If the user wants to incorporate knowledge of a local sample into the height model coefficients a
Bayesian update of the first two parameters of the height model [1] is possible. Aliernatively, an
ad hoc weighting scheme patterned after the linear composite estimators (Burk and others 1982)
can be chosen. In both cases only the first two parameters (bg, and by) are allowed to be updared
because the effects of elevation (E) and density (BAg) can not be adequately described with a local
sample.

The ad hoc approach adjusts the amount of change to the model parameters by a constant ratio (k)
between 0 and 1. A weight of k equal to zero causes the update routine to abort (no update), while
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a weight of k equal to one places all the emphasis on the local sample to determine the coefficient
values to be used for the height prediction equations. This ad hoc weighting process is given as:

(7] B =KIBL + J-K)Pp

where B = bg, bl; } where bg and blll are the updated parameter estimates
K = the ad hoc weight (0 <k £1)
I = an identity matnx (2x2)
Bp = the database estimate of the parameters (2x1)
BL = the estimate of the parameters based upon the local sample (2x1)

We modified the true Bayesian method because in prior work (Van Deusen, 1984) we found that it
worked poorly. With relatively small sample sizes the Bayesian update could result in large
covariance terms in the local covariance matrix which could cause the updated parameter estimates
to behave poorly. For example, the local parameter estimates could indicate that both the data base
slope and intercept coefficients should be increased over their database couterparts. A large
negative covariance term in the local covariance matrix could force these two coefficients to move
in opposite directions, regardless of the fact that both local parameter esumates were larger than the
database estimates. Because of this we modified the Bayesian approach and have termed it a
pseudo-Bayesian approach. The main difference between a Bayesian and a pseudo-Bayesian
approach is that for the latter we utilize only the vartance terms in the variance-covariance matrices
of the local and database samples to aveid problems associated with the covariance terms.

The pseudo-Bayesian approach is more conservative than the ad-hoc procedure. If the local
sample is small then the updated coefficients for the height prediction equation are quite close to the
database values. If, however, there is a large local sample, then the pseudo-Bayesian estimates are
a compromise between the database values and those determuned from the local sample. The
pseudo-Bayesian update is given by:

[8) B =WBL+ (I-W)fp

where P = { by, b} } where by and b are the updated parameter estimates

1 = an identity matmx (2 x 2)
Bp = the database estmate of the parameters (2x1)
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Br = the estimate of the parameters based upon the local sample (2x1)
. . . (V-l+v-l)'l v-l
W = the weighting matrix (2x2) = \YDTYL L
Vi)l = the diagonal elements of the inverse of the variance matrix for the

database parameters

Vi_] = the diagonal elements of the inverse of the variance mairix for the
parameters based upon the iocal sample

Van Deusen (1984) found that 1f the local estimate is of sufficient size it is often the best, but when
uncertainty exists the ad hoc or pseudo-Bayes methods are reliable, with the pseudo-Bayes being
conservative and of low risk.

GENERATING STANDS FROM SUMMARY STATISTICS

In cases where no individual tree measurements are available or when only summary statistics are
recorded by species it is possible to generate a facsimile stand description comprised of complete
individual tree records based upon the summary statistics. With the knowledge of the summary
statistics it is possible to generate a diameter distribution as developed in a later section. Individual
tree diameters can be sampled from this distribution. Tree height and height-to-crown base values
are estimated from equations [1] through [4] to complete the facsimile stand description. The goal
of this methodology is to produce a facsimile stand description of complete individual tree records
that is plausible given the specified summary statistics.

Generation of the Overstory of Trees
We will define overstory trees as those greater than a defined threshold value (usually 5.5 or 11.0
inches in DBH), and understory trees as those at or below the threshold value, We have developed
separate approaches for generating overstory and understory trees to achieve better accuracy in
predictng missing data values.

The joint distribution of species, DBH, height, and height-to-crown base is formulated as a
product of probability density functions (Van Deusen 1984, and Biging and Wensel 1987). This
joint probability disribution for these overstory trees can be represented as a mixture of
distmbutions as:

S
19 p(DHBRCB} = ¥ p(Species): p(DBH i Species)- p(H ! Species. DBH) p(HCB | Species. DBH. H)
s=1

where S = the number of species present in the stand
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The joint probability distribution of DBH, total height and height-to-crown base [p(D,H,HCRB)] is
factored as a product of three conditional distributions. The first term on the right hand side is
p(Species) which is the fraction of each species in the stand. This is easily specified by the user by
supplying the number of trees per acre by species in the hypothetical stand.

The three conditional distributions are for DBH, height and height-to-crown base. The first of
these conditional distributions is that of diameter given species [p(DBHlspecies]. The conditional
diameter distmbution can be generated from either a two-parameter truncated Weibull or a negative
exponential distribution by relating the summary statistics to the parameters of these distributions.
The first two moments of the Weibull distribution correspond to the average diameter of the
species, and the quadratic mean diameter? of the species which can be derived from basal area and
number of trees for each species (see equation [13]).

We found that the first moment (average diameter for a given species) could be accurately
predicted as a function of the quadratic mean stand diameter, elevanon and numbers of trees in the
species. This is discussed more fully in a following section (see equation [12]). The user can
generate a diameter distribution for each species having knowledge of only the number of rees and
basal area in each species. Individual tree DBHs are then randomly generated using an inverse
ransformation method for either the two-parameter Weibull or the negatve exponential.

To randomly sample from this distribution we will consider it a probability density function,
compute it's associated cumulative distribution function, and finally compute the inverse
cumulative distribution function from which we may generate DBHs. Since the cumulative
distribution function produces a probability and by definition probabilities are bounded between O
and 1 we may use uniformly distributed random deviates bounded between O and 1 to generate

values for input into the inverse cumulative distribution function.

A second distribution, the negative exponential, was provided for the infrequent case where a
balanced uneven aged condition exists within a stand. The details for the procedure of fitting the
distribution and a list of the necessary stand summary statistics are provided in a section bejow.

With eijther the Weibull or negative exponential dismibution only unimodal distributions can be
generated for a given species.  In most cases there are too few trees of a given species to develop
more complex distributional models. However, because we allow each species to have its own
diameter distribution it is possible to build multi-modal distributions for a stand.
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Once the diameters are specified with the diameter distribution the height and height-to-crown base
values are predicted with equations [1] and [3]. These later two equations correspond to the
conditional probability distributions of p(H | Species, DBH) and p(HCB | Species, DBH, H),
respectively. Elevation also needs to be supplied since it is an independent variable in the height

prediction equation [1]. Random stochastic errors distributed as N(O,Si_x) for equation [1] or

N(O, b 9i ) for equation [3] are added to the predictions if the random error feature has been

selected.

There are alternatives to the factorization approach utilized in this study. For example, the joint
distribution of diameter, height, and height-to-crown base could have been modeled as a mivariate
distribution. We did not investigate this latter approach because we had relatively few measured
trees on each of the remeasured permanent plots (usually less than 20). With a factorization
approach there is the additional advantage that any number of species can be modelled.

Weibull Distribution

The Weibull distribution has been widely used in forestry applications for describing the diameter
distributions of stands. This use stems both from the Weibull's shape and ease of estimation of
parameters. Since the purpose of generating hypothetical individual tree data from stand summary
information is for use in CACTOS to project future yields, the data should be compatible to allow
for transfer from STAG to CACTOS. Thus a truncation of 5.5 inches DBH is used since the
CACTOS growth models are fit on data greater than 5.5 inches DBH. The three parameter Weibull
may be reduced to the two parameter Weibull since the location parameter, typically called 4, is
zero. The two parameter truncated Weibull density function is given as (Van Deusen 1984):

(1) 0 =[¢] [ﬁc-l.e[mrc-xc)-b-c}

where  f(x)  =frequency of wees in diameter class x,
x  =rmudpoint DBH of diamneier ¢lass; x 2 T,
T  =twuncation DBH (5.5"),
bandc = parameters > .

Deriving the b and ¢ coefficients

To specify a particular distribution from this Weibull family, we need to define the b and ¢
parameters. The moment equation for the two parameter truncated Weibull is given as:
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T

[11] ExI = bl-e(T/D)C. |\ C(r/c+1) - C‘b-(HC)f < T+C-1 o-(x/b)C-dx
0

where ExT = the expcc[at'lon of the r[h moment of x or DBH,

I'(r/c + 1) = the gamma function of (r/c + 1).

The first and second momeats are used to simulianeously solve for the » and ¢ parameters. It is
known from Cauchy's inequality that the arithmetic mean must be less than or equal to the
quadratic mean stand diameter which is the square root of the equation [13] below. The arithmetic
mean stand diameter is predicted as a fraction of the quadratic mean stand diameter where the
fraction is constrained to be less than 1 through use of the logistic function. The arithmetic mean

stand diameter is predicted as follows:

o (1-Bo) .5
[12] DI = DBH =g + — — | ‘Dq
el-Br -BaE b In (B pard By )| |
where D = the estimated DBH = the first moment or mean stand diameter for a
given species
']jq = quadratic mean diameter of trees for a given species > 5.5" DBH,
Neg = number of trees for a given species > 5.5" DBH,
E = elevation (fr.), and
bo, .-..bs = the coefficients estimated from regression (see Table 7).

Table 7. Coefficients and fit statistics for the mean stand diameter medel for species number 1-8

combined.

Species N  MSE By B1 B2 B3 B4 Bs
number
(1-8] 2078 0.363 0.75637 -12.12687 -0.00018 3.62041 6.15495 56.31421

The second moment is the quadratic mean stand diameter squared which is given by definition as:

) — = L 2_ SBAg
[13] D@ ==L DBH; o
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where D& = the estimated second moment or quadrauc mean stand diameter
squared (qu) of a given species,
DBH = DBH? of the ith tree
n = the number of trees on a plot
K’ =0.005454 which is a conversion factor for basal area in square feet
to diameter squared in square inches.
SBAg = basal area of trees for a given species > 5.5" DBH,
SNg = number of trees for a given species > 5.5" DBH

The absolute difference between the two moments given above and the predicted moments given an
estimated & and ¢ are combined into an overall error figure. This figure must be less than 5%
(E%) of the respective moments. The error formula is:

_E%-DW +VE% D
- 2

[14] E

where E% = the percent error allowed in estimating the moment, and
DXDE)Y  are defined as above.

Using ponderosa pine as an example, if the species basal area were given as 150 £12 and the
species number of rees per acre given as 300 then the maximum allowable error in finding the
Weibull parameters would be:

_ 0.05-9.82 + v0.05-91.68

E 3

=1.32 inches,

where 9.82 is D) and 91.68 is D{2), When estimates of b and ¢ are obtained then predicted values
of DU and D are obtained and summed as:

/""‘-‘.I ! ""‘-n.l
£ _19.82-DVis 91.68-D)

2

-—— ——
1} 3 . . =
where D and D are the predicted first and second moment respectively. If E is less than E
then the esumates of & and ¢ are close enough and the procedure stops, otherwise new estimates of
the parameters are calculated and the process is repeated.
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To begin the algorithm for determining the coefficients two predictive equations are used to provide
starting values for the parameters. These equations were fit using multiple linear regression for
converged values.

b

-1.260 + 1.183 - D) - 0.0018- D

=8.112-0.543 - DI 4+ 0.013-DX)

Next a Newton-Raphson procedure is used to minimize E. If the Newton-Raphson fails to
converge within 6 iterations then a grid search is used to minimize E. The Newton-Raphson
procedure is much faster than a grid search and is quick to converge for most stands with mean
stand diameters of about 14" DBH and above. The Newton-Raphson method generally does not
provide stable estimates of the change in the ¢ parameter necessary to minimize E, and thus
influences almost exclusively the b parameter. Thus if the starting value for ¢ is not close

optimum then a grid search will be necessary.

Muluple minimums exist for the error surface, ﬁ, with respect to ¢ while only one minimum exists
with respect to . Thus a decision to restrict the ¢ parameter to its lowest minimum was made in
order to produce the maximum variance for the distribution. This was done after examining
permanent plot data for Northern California and noting the large variability over diameter classes
which exists on a plot to plot basis. If in the future these stands approach a more even-aged
structure then the program can be adjusted to reflect this by restricing the ¢ parameter into the next

largest minimum, thus reducing the variability over size classes.

The grid search algorithm begins by searching for the minunwm error over a course g:nd (mcrement

of 0.5) with respect 10 band ¢ This course grid search is accelerated by retrieving the D( and D("
from two binary files. Next the range of the parameters are reduced to be around the minimum
found in the course grid search, the increments for b and & are reduced to a third of their previous
value, and a finer search is performed. Up to ten iterations of increasingly finer grid searches are
performed. As with the Newton-Raphson technique the convergence criteria is that E be less than
E. Once the grid search converges a fing tuning is performed where b and ¢ are adjusted slightly
so that the error in estimating the first moment is approximately the same as that of the second

moment.



p 20

Estomating DBHg
The derivation for the inverse cumulative distribution function of the truncated two-parameter
Weibull is as follows. The probability density function is integrated from the lower truncation
point (T) to the diameter of interest (x).

[15] Fr(x) =]; [ﬁ] [ﬁ_]c-l_c[(TC-xC).b-c] gt = [1- eTE.ctamo)

where  Fr(x) = the cumulative number of trees between the lower truncation point (T),
and the specified upper diameter (x)

band ¢ =estimated constants

This provides the cumulative number of trees up to the the diameter of interest. Generating a
uniform random number between 0 and 1 and multiplying it by the total number of trees gives us a
value for F, we may then solve for the DBH by inverting the above equation.

(16) DBH = b [(T/b)° - log, (1- Fp(x))] /¢

Thus by generating a uniform random number (F1(x)) we can use the inverse ransform of the
cumulative distribution function to estimate diameters at breast height.

Negative Exponential Distribution

The diameter distributions of "balanced” uneven aged stands (Meyer 1952) are often characterized
as being distributed according to the negative exponential distribution. A typical method for
applying the distribution to a stand is with the diminution quotient or "Q" value (Husch, Miller and
Beers 1982, Davis and Johnson 1987). To obtair the number of trees in the next to the largest
diameter class we would simply multiply Q by the number of tees in the largest diameter class.
Thus for the next smallest diameter class we would mulidply Q times the number of wees in the next
largest diameter class or Q2 times the number of trees in the largest diameter class. To compute the
number of trees in each diameter class we need to specify Q, a range of tree diameicrs, their
diameter class (i.. 2"), and the number of trees in the largest diameter class. Unlike with the
truncated Weibull distribution, we use the negative exponential distribution to simultaneously
generate both overstory, and understory trees. .

The negative exponential distribution is given as follows:

[17] SNn = k-e-2 DC.
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where SNn = the estimated number of trees of a given species in nlll diameter class DC,,,

DCh = the nif! diameter class, and
a and k = coefficients.

To specify the distribution we need to define £ and & which can be done by using Q, a value which
may be more meaningful to a manager than the a and 4 coefficients of the negative exponential

function.
Deriving the ¢ and & coefficients

The coefficient a is derived from the definition of Q:
o~ TN k -a DCn.]

(18) Q=S € = caC

SNH k‘e‘a DC"

where Q = the estimated diminution quotent
SNp-1 = the number of trees for a species in the next to the largest diameter class,
SN = the number of trees for a species in the largest diameter class,
DCp.1 = the next to the largest diameter class of a given species,
DG, = the largest diameter class of a given species,and
C = the size in inches (width) of the diameter class of a given species.

Solving for g we get

log Q
C
Since we know the number of trees in the largest diameter class and the ¢ parameter we may solve

[19] a=

for & using the negative exponential equation,

SN,
c—a Dcn
So we can see that when Q and SN are known we can estimare the g and & parameters needed for

o] k=

the negative exponential distribution in equation [17].

Calculations when Q or SN are unknown

If either Q or SN, are unknown then the basal area for the species on the plot (SBA) is used to

compute the missing variable.
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If Q and species basal area (SBA) are known, but SN, is unknown we iteratively solve for SNy,

using equation [21]. In equation [21] species basal area is formulated as the sum of the number of
rees in a diameter class multiplied by the square of the diameter class.

[21] SBA =K' 2 §N; DBH?

where  SBA  =roral basal area for the species on the plot in square feet,

SNi  =the estimated number of trees of the species in the ith diameter class,

DBH; =the midpoint DBH of the i" diameter class in inches for the species,

K = a constant (0.005454) for converting basal area from square inches to
square feet.

To estimate SN, from @ and SBA we initially give SN,, a starting value of one. Then if the
estimated SBA is less than the specified SBA, SN, is increased by 0.001 or visa versa. Using the
new estimate of SN, the procedure is repeated until the difference between the specified and

estimated SBA is less than one square foot. Q can then be estimated from equation [18].

If Q is unknown then SBA and SN, must be given. Q is then computed using an iterative process

where Q is initially set to 1.1. The number of trees in each diameter class i of a given species is
estimated by

(22] SN, = §N,-Q"1

SBA is then estimated and compared to the specified basal area and the estimate of Q is
incremented identically as the estimated SN, is incremented above. The same threshold of one
square foot of basal area difference between the specified and estimated SBA is used as a stopping
criteria.

Now that all of the necessary information is complete the coefficients for the negative exponential
distributicn may be easily computed. The diameters are simulated and written to the stand
description file with an expansion factor of one. The tree total height and height-to-crown base is
also estimated given the simulated diameter at breast height using equations [1} to [4]. The total
number of trees for the species on the plot will be rounded to the nearest integer so that all the trees
in the completed stand description file will have an expansion facior of one.
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Estimating DBHs
The derivation for the inverse cumulative distribution function of the negative exponential is as

follows. The probability density function is integrated over the range of diameters up to the
diameter of interest.

~ DB ~ ~

e e [c-ﬁvDBH . e'a‘"’]

: -a C.4

where  F(DBH) = the cumulative number of trees between the minimum diameter (m),
and the specified upper diameter of interest (DBH),

kand3d = estimated constants,

DBH
) F(DBH) = K e-3DC. =k
(23] ( ) J. o dDC c

m

m =DCpyin - % with C = the class width in inches,
DChin = minimum diameter class (in).

This provides the cumulative number of trees up to the the diameter of interest. Generating a
uniform random number between 0 and 1 and multiplying it by the total number of trees gives us a
value for F(DBH), we may then solve for the DBH by inverting the above equation.

Jog.(-EDBH) (Sytedm )
k

[24) DBH=

-~

a
Thus by generating a uniform random number (F) we can use the inverse transform of the

cumulative distribution function to estimate diameters at breast height.

Generation of the Understory Trees

As an adjunct to the stand generation techniques (overstory generation) we have developed the
capability to generate understory trees. The understory trees can be between 1.0 and 11.0 inches at
DBH. The overstory of trees {measured or generated) can be used to predict the b and ¢
parameters of the Weibull needed to generaie understory trees. Understory tree height and height-
to-crown base values are estimated from equations [2] and [4] to complete the understory facsimile
stand description. Because stands of trees are often simulated for over 30 years with the CACTOS
system it is essential to be able 1o generate an understory component that matures with relatively
long simulations. One reason we separated the overstory and understory components 1s that there
is much greater variability (plot to plot, or stand to stand) in the number of understory trees than in
the number of overstory rees. Hence the understory generator is inherently more imprecise.
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A two-parameter Weibull distribution was fit to the understory component { 1.0" <DBH < 11.0")
for each of the 308 permanent plots for which there were at least 6 understory trees present on the
plot with a plot average diameter exceeding 5.5 inches. Six trees was chosen as a minum number
needed for estimating the 2 parameters of the Weibull distribution, although most plots had many
more than 6 trees. An 11.0" DBH was chosen as an upper value for the distribution rather than a
5.5" DBH value to allow for a more regular distributional form and 1o increase the number of tees
available for modelling the understory diameter distribution. Even though an upper DBH value of
11.0 inches was chosen, the understory generation can be specified for any range within these
limits. Summary statistics for the understory component of the 308 permanent plots used to model
the Weibull diameter distribution are presented in Appendix B.

We found that the coefficients of the Weibull for the understory could be predicted as the following
functions of overstory parameters:
bs 04CVy

DBHITI]H * b3CV6 * DBHmm

~ bj
2 = by + —
[25] b m+N6+

[26] @ =c) exp(Cab +3XC4 + CsY +CZ )

where b = predicted value for b (scale) parameter of two parameter left truncated Weibull
C = predicted value for ¢ (shape) parameter of two parameter left truncated Weibull
Ne = the number of trees per acre greater than 5.5 inches in DBH,
DBHpin = the minimum diameter measured on a specific plot, usually 1.0 or 2.0 inches
CVsg = the coefficient of variation of DBH for trees greater then 5.5 inches DBH
X =0.75 + BAg/87.945 - SDIg/131.0
BAg = Stand basal arca in trees greater than 5.5 inches DBH
SDIg = Stand density index considering only wrees greater than 5.5 inches DBH (cf.
Reineke 1933, Avery and Burkhart 1983)
Y = 0.035 + 1/(b - SDIg)
7 - 410.0 + 1/[ In(b) - In(BAg)}
bg, -.. ,ba =are b-coefficients estimated for all species combined

Cl, ..., Cg = are ¢c-coefficients esiimated for all species combined

Coefficient values and fit statistics appear in Table 8 below. Due to the very great inherent
variability of the understory component, these predictive equations explain a small but significant
portion of the total variability. Therefore the predicted parameters resulting from using these
equations will not be very precise but are still preferred over using a simple average value. In
general, predicting the parameters of a Weibull distribution from stand characteristics even in
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situations where there is not a great deal of variation has proven difficult, and R? values are
typically less than 0.10 (Knoebel and Burkhart 1991).

Table 8. Coefficients and fit statistic for the understory Weibull parameters for all species
combined estimated on n = 308 plots.

MSE by by bo b3 bs

3.718 15.4269 -66.160 -15.0426 -0.13859 0.22027

MSE ¢ co c3 cq C5 ch

3.691 0.57718 0.31116 0.51325 2.9000 -18.8181 4,0501x10-3

Specification of total numbers of understory trees
Even though the b, and c-parameters of the Weibull distibution can be directly predicted via the

two equations listed above, this distribution will give only the relative frequency of tree sizes.
Therefore, the total number of understory trees needs to be specified before the understory can be
generated. The total number of understory trees can also be predicted from overstory parameters.

Predicting the total number of understory trees from overstory parameters is analogous to
predicting the number of ingrowth trees (numbers of trees that will reach some minimum surveyed
size in a specified time) with some obvious differences. They are similar in that both involve only
use of overstory conditions to estimate the condition of the understory. Prediction of ingrowth
numbers is arguably more well defined than prediction of total understory numbers in the sense
that one particular size class is under scrutiny while prediction of understory numbers may involve
a broad spectrum of size classes. On the other hand, estimates of ingrowth are further complicated
by an implied growth rate of trees whose exact sizes are unknown, while estimates of the total
number of understory trees represent a static depiction of the stand at one instant in time. Both
estimation problems are complicated by the fact that stands currently with similar overstory
conditions may have had dissimilar histories, which may result in dissimilar understory conditions.

Models frequently used to predict ingrowth have been reviewed by Shifley (1990). Typically,
variables important to the prediction of ingrowth involve stand density measures such as basal area

per acre, number of trees per acre, percent stocking, and sum of diameters per acre. These
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variables also affect growth rates of individual trees, so their superiority in predicting ingrowth is
somewhat to be expected. One might also expect that additional variables may be required to
predict total number of understory trees due to the previously noted differences between these two
estimation problems.

A useful approach 10 modelling the number of understory trees was found by viewing the problem
as specification of total stand structure based upon what was found in the overstory portion only.
This lead to the investigation of several stand structure variables. Shifley and Lentz (1985) pointed
out that the ratio of the mean DBH 1o the standard deviadon of DBH was a valuable index to the ¢,
or shape, parameter in the Weibull distribution. Miller and Weiner (1989) and Knox and others
(1989) found that the inverse of Shifley’s index, commonly known as the coefficient of variation,
was useful in describing “‘size inequality”, or the degree of size hierarchy development in
populations of forest trees. We found that the ratio of variance of DBH to the mean DBH was a
useful predictor in our models for esumating total number of understory trees.

A model for predicting the number of understory trees was patterned after the ingrowth models of
Ek (1974) and Hyink and Moser (1983). The same model form is used for predicting the number
of trees between 1.5 and 5.5 inches DBH (Nj.g), as for the number of trees between 5.6 inches
and 10.5 inches DBH (N¢.11}. The predictions for understory tree numbers are given by:

[27] Nj.g = exp{ by + b;-DSUMEEN ! + by (Rg + 1.5)-Nb* )

(28] Ni11 = exp{ co + ¢ DSUM$-N Y + 3Ry + 1.5)-N¢Y )

where Ni.g = the predicted number of trees per acre with 1.5 €DBH £5.5
Nin = the predicted number of trees per acre with 5.5 < DBH £ 10.5
Ng = the number of trees per acre whose DBH > 5.5 inches
N11 = the number of trees per acre whose DBH > 10.5 inches
Rg = the ratio of variance of DBH to mean DBH for wees > 5.5 inches
Rii = the ratio of vaniance of DBH to mean DBH for trees > 10.5 inches

DSUMg = the sum of the diameters for trees whose DBH > 5.5 inches
DSUMj =the sum of the diameters for trees whose DBR > 10.5 inches
bg,.... by = b-coefficients estimated for each forest type (see Table 9a), and
€Q,---» €4 = c-coefficients estimated for each forest type (see Table 9b)

We found that predictions could be improved through stratification by forest type. An analysis was
performed to see if any of the classes could be combined, but we found that a statistically significant
improvement was made by using separate coefficients for each major forest type for predicting both
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Ni.¢ and Ng.1;. The coefficients were therefore estimated by timber type and are given in Tables 9a
and 9b.

Table 9a. Coefficients for Ny.g

Timber type Sy.x N bo by %) b3 b4
Douglas-fir 52.8 25 9.015 -0.412 1.0 0.00091 1.0
Mixed conifer 128.0 469 6.579 -0.211 1.0 0.00110 1.0
Ponderosa pine  135.0 59 6.018 -0.002 1.691  0.00306 1.0
True fir 81.8 83 7.100 -0.266 1.0 000114 1.0

Table 9b. Coefficients for Ng-11

Timber type Syx N Co C) c2 c3 C4
Donglas-fir 35.9 25 6.525 -0.189 0.993 000223 1.0
Mixed conifer 50.0 468 6.501 -0.146 i.0 0.00245  0.870
Ponderosa pine 63.4 56 6.675 -0.188 1.0 0.00324 1.0
True fir 37.5 83 7.252 -0.626 0.836 0.00008 1.0

STAG automatically determines which forest type the stand description belongs to using the
following rules:
Timber tvpe Definition

Douglas-fir Douglas-fir comprises = 80% of the stand basal area (BAg or BAj1)

Ponderosa pine  ponderosa pine comprises = 80% of the stand basal area (BAg or BA) 1)

True fir red fir and white fir comprise = 80% of the stand basal area (BAg or BA|j)

Mixed conifer  no one species (PP, SP, DF, WF, RF, IC) exceeds 80% of the stand basal
area {BAg or BAjp)

It should be noted that these models are accurate, but not precise. That is to say, there is a large
variance associated with these predictions. Therefore, the user is given two options for specifying
the number of understory trees. The first option is prediction of understory tree number using
equations [27] and [28]. This predicted number of understory trees for a given stand specification
is displayed so that the user can accept the model prediction, or specify another value in lieu of the
predicted number. This second option is provided for cases in which the user has good knowledge
of local forest conditions and reproduction patterns.
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ification of species
Species of the understory can be specified via two options. In the first option the rates of species
composition can be specified that follow the database values used for model development in
STAG. These rates are given in Table 10:

Table 10. Percentages of Species by Timber Type Rounded to the Nearest Five Percent6.

Timber Tvpe
Douglas-fir Mixed Conifer Ponderosa Pine True Fir

Spp{ Diameter range Diameter range Diameter range Diameter range

1-6% 6-11 1-11] 1-6 6-11 1-11 1-6 6-11 1-11 1-6 6-11 1-11
PP| 5 0 3 10 20 15 50 80 65 0 G 0
SP| 5 0 3 3 5 5 5 0 3 5 5 5
IC] 10 5 5 30 20 30 15 10 10 10 5 10
DE] 60 85 70 15 20 15 5 5 3 0 0 0
WEF| 20 10 15 40 35 35 25 5 15 75 75 75
RF| O 0 0 0 0 0 Q 0 Q 10 15 10

We were unable to develop meaningful equations for prediction of species composition as related to
the overstory composition and sizes of wees. Because of this the percentage of trees occurring in
each species in the understory can be specified directly by the user of the program.

Creating an understory tree list

Because its possible to generate a large number of understory trees we use the following
methodology to reduce the number of tree records being written. For either the predicted or the
user specified number of understory trees (£ 11.0 inches at DBH) we generate individual tree
records with a tree expansion factor of one. The diameters of these trees are generated from the
Weibull distribution using the equations for b and ¢ given under "Generation of Understory trees.”
Tree heights and heights-to-crown base are determined according to equations (2] and [4] as
described in "Estumating Total Height” and "Estimating Height To-Crown Base", respectively.
Stochastic errors are added according to the methods described in "Stochastic Errors.”

6 DFy.g denotes Douglas-fir timber type. The row entries corresponding to this column show the
percent of species in the Douglas-fir timber type for trees within the 1-6 inch DBH class ( 1.5 £
DBH £ 5.5). Other columns show the percentage of species for a given timber type in the 6-11
inch DBH class, and the 1-11 inch DBH class. Values of less than 5 percent have been deleted, and
the other categories within a column have been proportionally adjusted and rounded to the nearest 5
percent.
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After the understory is developed in the above fashion, the tree records are added to the existing
overstory stand description. If the toral number of records exceeds the 500 tree record limit
imposed by CACTOS, or if the total nember of tree records exceeds some user specified limit
{which may be greater or less than 500), the user is given the option of “"compressing” the
understory tree list. Understory tree record compression is carried out by averaging those tree
records which have similar tree attributes, then replacing those individual tree records with their
average values and an appropriate expansion factor.

The compression algorithm is implemented as follows. Individual tree records are grouped into
DBH, total height, and live crown ratio classes by species. If the first grouping does not
sufficiently reduce the number of understory tree records, successively coarser and coarser classes
are examined until the humber of understory tree records is less than or equal to the number
desired.

The first grouping uses % DBH classes, five dynamically determined height classes, and five

dynamically determined live crown ratio classes. The height and live crown ratio classes are
dynamically determined in the sense that the data determing the class limits and class intervals for
each live crown ratio class nested within height class, where each height class is nested within
DBH class. Thus, the maximum and minimum heights for the smallest DBH class will generally
be different from those in the largest DBH class. Similarly, the largest and smallest live crown
ratios found in the smaliest height class of the smallest DBH class will generally be different from
the largest and smallest live crown ratios found in the largest height class of the smallest DBH
class, etc. We felt that these nested classes would retain more of the "individuality” of each tree
record than would non-nested classes.

If the first grouping fails to meet the desired number of understory tee records, the groupings are
made successively coarser in the following manner. First, the number of dynamically determined
height classes is reduced to three. If this grouping is unsuccessful, the number of live crown ratio
classes is reduced from five to three also. Next, 1" DBH classes are mied, then two height classes,
then 2 crown ratio classes, then 2" DBH classes. As a last resort, one tree record per understory
species is attempted, though a compression of this severity is certainly not recommended if the
number of generated understory tree records far exceeds the number of species.

CONVERTING STAND TABLE DATA TO AN INDIVIDUAL TREE LIST
A stand table contains the numbers of trees by diameter class (usually classes are between 1 and 2
inches) and species. It is a common method for obtaining field data. but obviously individual tree
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information is lost. Its main advantage is that since diameters only have to be crudely
approximated there are substantial time savings in collecting information. The number of trees in
the diameter classes can be thought of as a discrete approximation to a continuous diameter
distribution.

The methodology used to convert stand table data into individual tree data to produce a facsimile
stand description closely parallels the technique used for continuous data which was previously
described under the section entitled "Generating stands from summary statistics”. We assume that
the distribution of grouped diameters given species [p(DBH | Species)] follows a Weijbull
distribution. The probability of a tree height falling into some discrete height class given its species
and DBH class [p(H | Species, DBH)], and the probability of a tree crown falling into some
discrete class given its species, DBH and height class [p(HCB | Species, DBH, H)] are both
hypothesized to follow a normal distribution. These assumptions were tested using a
Kolmogorov-Smirnov test and found to be acceptable. For further detail see Van Deusen (1934),

Diameter Distributions

We postulated that distribution of diameters across diameter classes followed a Weibull
distribution, but within a given diameter class we assumed that trees followed a uniform
distribution. If diameter ¢lasses are not wide then this is a plausible assumption. We tested this
latter assumption on 50 1/41 acre plots (see Van Deusen 1984) and found that the simplifying
assumption of uniform distribution of diameters within a diameter class yielded results quite similar
to that obtained with using Weibull distribution across classes when diameter classes were no
larger than two inches.

Height Distributions

An average value for height and height-to-crown base is predicted from equations [1] and {3] by
using the diameter class mean. The predicted average height is used to locate the centroid of the
height distribution within a diameter class (see Figure 1). The variance of the distribution is then
approximated using the variance of the regression of the height prediction equation. We estimate
the proportion of rees to allocate 1o a specific height class within a diameter class by determining
the percentage of the area under the curve for each height class. We call this process distributional
apportionment because we allocate (apportion) the number of trees per diameter class over the
height classes using this methodology.
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Figure 1. Distributional apportionment of stand table data.

Height-to-crown base Distributions

We assume that the distribution of crowns within a given height and DBH class follows a normal
distribution. We allocate the numbers of trees into each of the crown classes using the same
methodology as used for allocating trees into height classes. The normal curve is first located
using the mean height-to-crown base value assuming the midpoints of the height and diameter
class. The variance of the normal curve 1s approximated by the variance about the height-to-crown
base predictive model. In the last step the area under the curve above each crown class is
calculated and the number in each height-diameter cell over the crown class is determined
according to these proportions.

This apportioning process calculates the numbers of trees to place in each cell of the height-
diameter-crown categories. We define these cells to be either 1 or 2 inch diameter classes
(specified by the user), 10 foot height classes, and 10 foot height-to-crown base classes,
Individual tree dimensions (diameter, height, and height-to-crown base) are given an equal
probability of occurring at any location within this three dimensional cell by drawing random
numbers which correspond to x,y,z coordinates in 3D space. Using this procedure we have
developed an individual tree list from the original stand table, but they are pseudo-individual in the
sense that they have been estimated using the above procedure, rather than measured.

T N N
The procedure was tested on 166 one-fifth acre permanent plots from the Northern California
Forest Yield Cooperative database described under DATA. Only the Weibull distribution was
tested since the stands used for the test are considered to generally be managed stands and do not
follow a negative exponential distribution. The second measurement data collected in 1984 from
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the southern Cascade region was used for the test. The accuracy of the procedure for predicting
the number of trees per DBH class and the volume per DBH class was evaluated. Two inch DBH
classes were used beginning at 5.5" and going 10 49.5" DBH. The error index developed by
Reynolds, Burk, and Huang (1989) was used for the test and is given as:

k —m—
[28] e=N-2 f w(x)-dF(x) - f w(x)-dF (%)
=Ly f

where e = error index,
N = number of trees per acre,
w(x) = weighting factor,

F(x)  =1the cdf of diameters on a plot as predicted from the model,

Fix) = the empirical cdf,

dF(x) = the differential of the cdf (empirical or predicted) with respect to x (diameter)
k = the number of DBH classes,

1§ = the jih DBH class.

As the authors of the index point out 2 "good" fit in one diameter class does not offset a "poor” fit
in another. The error index provides a means for comparing the overall fit of a model to another
model, but the individual cells (DBH, species classes) must be examined to determine where a
particular model fits adequately.

We perform two sets of analysis. In the first we compute the error index of an "average stand”.
The "average stand” is the stand table produced by averaging all of the 166 stand tables associated
with each of these plots. We judge our ability to produce a tree diameter distribution by seeing
how accurately the number of trees in variocus diameter classes is predicted for this "average
stand”. We also judge how well our diameter distribution models work by comparing the
volumes (Biging, 1983) predicted for each diameter class with the average volume computed from
the 166 test plots.  In the second analysis we present results which show the average of the error
indices computed for each plot individually.

The resuits for the "average stand” are shown in Tables 11 and 12. Table 11 shows the
"misclassification” by species and DBH class for the average of the 166 plots. By
misclassification we mean the signed values calculated from differencing the predicted number of
trees {or volumes) from the actual number of trees (or volurnes) in each diameter class. The sum of
the absolute values (predicted minus observed, see equation [28]) is used by Reynolds, and others
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to calculate the error index. Thus for ponderesa pine in the 8.5 DBH class this model
underpredicted by 2 trees.

In the right margin of Table 11 are the error indices by species. The indices’ magnitude
correspond, relatively, to the abundance of the trees on the plots. In other words, the more trees
there are the greater the error. The bottom margin is the average misclassification across species
for a particular DBH class. Thus we sec on average an underprediction for the 6.5 to 8.5 DBH
classes and an overprediction in the 10.5 10 12.5 DBH classes. There are on average only slight
underpredictions for the 18.5-22.5 and the 28.5 inch diameter class. The lower nght cell of Table
11 provides the overall error index for this "averaged” plot which is a value of 68.

Another statistic we computed was the average plot error index with its associated standard errors,
The average was 358 and the standard error was 11.8. The average is quite large and shows the
difficuity of predicting the diameter distribution for a particutar plot. The error index in Table 11 is
much smaller (68) because we are averaging the plots and then computing the errors as opposed to

average error index value (358.13) where we have the average of the individual plot error indices.

Table 12 provides the same type of information as Table 11. In Table 12 the error index is
weighted by board foot volume whereas in Table 11 the error index was weighted by numbers of
trees. In Table 12 we see that volumes are on average slightly underpredicted for the 6.5-8.5 inch
diameter class. Volumes are overpredicted in the 10.5-18.5 inch diameter class, underpredicted in
the 20.5-28.5 inch diameter class and overpredicted in the 30.5 inch and 32.5 inch and greater

diameter class.

In Table 11 we reported that on average the models underpredicted by 2 or 3 trees in the 18.5-22.5
inch diameter class. Because trees in this size range average around 200-500 board feet it is not
surprising that in Table 12 we find that the misclassification index for diameter classes in this range
vary from an overprediction of 516 board feet to an underprediction of 2374 board feet. The
average net effect of these over and underpredictions is a slight over prediction of 330 board feet.
Thus there appears to be no major bias in volumne associated with producing diameter distributions

using the Weibull generation procedure.

We also computed the average plot error index weighted by volume with its associated standard
errors. The average was 44540 board feet and the standard error was 3187 board feet. Again this
underscores the difficulty of accurately predicting the diameter, and volume distribution on any

particular plot.
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In another test of this procedure we used the same plots to create "known” stand tables. We then
used the stand tables to apportion the trees over height and crown classes. The results for the
average stand table based on these 166 plots is presented in Table 13. The numbers of trees
apportioned into these classes corresponded well with the actual numbers observed on the plots,
except for the smallest diameter classes. Predicted heights and predicted heights-to-crown base
were generally close to the observed average values. This demonstrates that stand tables can be
generated which, on the average, closely approximate actnal stands. Of course, good judgment
should be exercised in using these routines. Real ficld data is always preferable to generating
stands from summary statistics. Even though these procedures produce reasonable facsimiles to
real stands there are always inaccuracies produced in this process. For a more detailed treatment of
this analysis see Van Deusen (1984),
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Table 11. Average misclassification indices (actual - predicted) of numbers of trees per acre by
species and DBH classes and overall error index of the "average” plot from STAG version 4.0.

Misclassification Index

DBH Class Species

Species | 6.5 8.5 10.5 12.5 145 16,5 18.5 20.5 22.5 24.5 26.5 28.5 30.52325 [Error Index
PP 3 2 -4 6 0 0 0 1 1 0 1 0 0 0 -2 (18)
Sp 1 0 0 0 1 0 0 0 0 0 0 0 0 0 2@
C 7 5 0 0 0 0 0 0 0 0 0 0 0 0 12 (12)
DF 5 0 220 0 0 0 0 ) 0 0 0 0 0 4 ®
WF 9 4 55 L0 2 ] 1 1 0 0 0 0 7 (28)
RF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (©

25 1t -1l -1l 0 0 2 2 3 0 1 0 0 0 22 (68)

Table 12. Average misclassification indices (actual - predicted) of board feet to a 6 inch top per
acre by species and DBH classes from STAG version 4.0 The value in the last column is the
signed value while next to it in () 1s the absolute value necessary for the computation of the error

index.
Misclassification Index
DBH Class Species

Species|6.5 8.5 105 12.5 145 165 18.5 20.5 22.5 24.5 26.5 285 30.52325 | Emor Index
PP 38 24 -221 521 -345 223 .295 318 671 186 983 95 -288 -576 |-344 (5394)
SP 2 11 6 -6 20 58 1 -110 60 125 -28 61 -67 -440 |-341 (1651)
IC 7 -1 51 272 35 130 87 4 130 90 18 0 72 269 | 388 (988)
DF 21 =27 4193 208 -215 216 -299 199 762 3199 0 23 2161 |-562 (2548)
WF §4 55 .36% -716 -652 -624 42 309 655 205 107 802 38 526 | 386 (5236)
RF 3 .1 .44 .34 .57 .27 .52 18 96 72 384 22 69 104 | 143 (1003)

155 39 .884 -1577 -1284 -1162 -516 340 2374 675 1663 746 -413 -486 |-330(16820)
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Table 13. Average Stand Table based upon 166 permanent plots from the Southern Cascade Region.

Diameter Observed Expected Observed  Expected Observed Expected

Class Av. Numbers Av. Numbers Av. Height Av, Height Av, HCB Av, HCB
6.5 50.2 21.7 355 39.7 21.0 16.3
8.5 49.7 359 45.2 48.4 26.1 21.3
10.5 30.4 42.5 56.4 57.6 31.9 26.3
12.5 28.9 40.7 65.0 65.5 36.3 30.5
14.5 29.5 29.7 72.2 73.4 385 34.6
16.5 i8.8 19.8 80.8 81.0 42.7 38.3
18.5 15.2 12.5 85.7 87.9 44.7 42.4
20.5 10.3 8.0 95.0 95.0 49.0 42.5
22.5 9.8 4.5 99.1 102.3 51.6 49.0
24.5 4.6 3.0 106.6 109.2 52.7 51.8
26.5 5.0 1.9 113.1 114.8 59.4 55.2
28.5 3.0 1.5 116.3 120.0 61.3 58.1
30.5 1.3 1.0 120.0 124.8 65.8 60.7
32.5 0.6 0.5 119.6 132.1 61.7 65.8
345 0.7 0.4 135.2 136.6 75.5 69.9
36.5 0.6 0.3 121.9 149.3 64.6 71.3
38.5 0.4 0.2 140.4 145.8 69.6 68.5
40.5 0.1 0.1 135.2 157.7 76.6 73.6
42.5 0.1 0.1 147.7 168.8 89.7 78.1
44,5 0.0 0.0 0.0 170.3 0.0 78.1
46.5 0.1 0.1 146.3 167.8 97.0 83.1
48.5 0.0 0.0 0.0 169.8 0.0 85.3
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DISCUSSION

The Stand Generator, STAG, is an important component of a simulation system for mixed conifer
growth and yield projection. STAG was created to ensure that different types of inventory data
could be supplemented to produce data sets suitable for projection in the forest simulator
CACTOS. There are different procedures and analysis reutines within STAG for 1) processing
missing data, 2) converting stand table data (approximations to a diameter distribution), and 3)
transforming summary statistics such as number of mees and basal area per acre to a stand
description comprised of complete individual tree records for use in CACTOS. To "fill in" missing
data STAG uses predictive equations for total height and height-to-crown base developed from a
permanent plot system of over 20,000 trees in Northern California. To create a complete stand
description based only on summary statistics (termed stand generation) is much more complicated.
For this case STAG factors the joint distribution for species, DBH, H, and HCB into a product of
probability density functions and models each of these compenents.  The methodology developed
for converting stand table data closely follows that described for stand generation.

These procedures are not intended to replace extensive data collection procedures. Instead these
are intended to increase the availability of data that can be used with the CACTOS simulation
system. The procedures developed for STAG have been tested using permanent plot data for
mixed species, multiple aged coniferous stands. They produce relatively accurate and reliable
results particularly when filling in missing data. The stand generation and stand table conversion
techniques should be used more cautiously as they only produce a facsimile of a stand given the
reduced data sets or summary statistics provided.
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Figure 1. Locatdon of permanent plots by township.
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Summary Statistics for the permanent plot tree data.

APPENDIX

Ponderosa Pine n=4173
Variable Mean Std. Dev. Minimum ~ Maximum
DBH (in) 14.11 6.58 5.5 55.8
Total Height (ft) 72.87 27.97 12.0 184.0
Height-to-crown base (ft) 34.92 18.21 1.0 145.0
SITE 74.20 17.51 29.0 150.0
Basal Area (ft2) per acre 104.42 82.31 22.5 532.7
Number of trees per acre 215.43 100.04 16.0 515.0
Sugar Pine n=1070
Vanable Mean Std. Dev. Minimurm Maxamum
DBH (in) 15.96 8.41 5.5 59.1
Total Height (ft) 73.49 31.46 15.0 199.0
Height-to-crown base (ft) 36.91 18.25 1.0 105.0
SITE 76.67 16.30 29.0 156.0
Basal Area (ft?) per acre 216.27 98.08 30.2 532.7
Number of trees per acre 207.89 90.64 150 490.0
Incense Cedar n = 2260
Varable Mean Std. Dev. Minimum Maximum
DBH (in) 12.70 6.90 5.5 67.6
Total Height (ft) 48.19 22.17 11.0 182.0
Height-to-crown base (ft) 25.10 14.88 1.0 95.0
SITE 76.22 16.49 29.0 130.0
Basal Area (ft2) per acre 213.25 90.05 27.2 532.7
Number of twees per acre 205.21 91.31 18.0 515.0
Douglas-fir n=2458
Variable Mean Std. Dev. Minimum Maximum
DBH (in) 13.22 5.91 5.5 50.4
Total Height (ft) 72.59 24.92 11.0 170.0
Height-to-crown base (f1} 38.63 18.34 2.0 126.0
SITE 77.82 16.59 36.0 157.0
Basal Area (fi2) per acre 169.06 72.56 16.5 4242
Number of trees per acre 182.98 76.14 20.0 515.0
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White fir n=35167
Variable Mean Std. Dev. Minimurm Maximum
DBH (in) 13.03 6.17 5.5 48.9
Total Height (ft) 64.29 26.60 9.0 171.0
Height-to-crown base (ft) 33.37 17.49 1.0 114.0
SITE 76.29 16.50 23.0 130.0
Basal Area (fi2) per acre 211.82 £9.90 35 532.7
Number of trees per acre 203.20 89.92 5.0 525.0
Red fir n =501
Variable Mean Std. Dev., Minimum Maximum
DBH (in) 15.39 7.54 5.5 51.6
Total Height (ft) 70.01 29.09 15.0 154.0
Height-to-crown base (ft) 33.55 18.63 3.0 92.0
SITE 65.43 11.35 46.0 104.0
Basal Area (ft2) per acre 230.00 94.37 36.6 428.8
Number of trees per acre 199.41 95.00 15.0 525.0
Other Hardwoods n =273
Variable Mean Sid. Dev. Minimum Maximum
DBH (in) 10.79 4,41 22.5 454.4
Total Height (ft) 47.57 19.85 11.0 104.0
Height-to-crown base (ft) 25.36 11.62 2.0 69.0
SITE 78.51 21.52 37.0 114.0
Basal Area (ft2) per acre 204 .61 108.70 22.5 454 4
Number of trees per acre 173.97 65.70 36.0 3035.0
Black Oak n =340
Vanable Mean Std. Dev. Minimum Maximum
DBH (in) 12.93 7.00 5.5 52.7
Total Height (ft) 52.55 19.55 12.0 164.0
Height-to-crown base (ft) 24.75 13.92 1.0 82.0
SITE 75.83 15.45 37.0 114.0
Basal Area (ft2) per acre 188.40 86.57 30.6 4242
Number of trees per acre 184.35 79.71 16.0 376.0




APPENDIX B

Summary Statistics for the permanent plot small tree data.

All species Tree Statistics n = 3339
Variable Mean Std. Dev. Minimum _ Maximum
DBH (in) 3.51 1.16 1.50 5.40
Total Height (f1) 18.24 8.50 5.00 64.00
Height-to-crown base (ft) 10.34 7.30 1.00 56.00
Plot Statistics n=308
Basal Area of all tress £ 5.5" 10.51 8.78 0.59 51.07

Number of all trees < 5.5" 89.93 122.85 4.00 755.00






